“Paging Dr. Freeman”: What Radioactivity Is

Radioactivity - Image via wikipedia

Radioactivity - wikipedia.org

The recent earthquake and tsunami in Japan and the subsequent crisis at the Fukushima nuclear power plants have propelled nuclear reactors and nuclear energy to the top of every media outlet across the world.  In light of this increased interest in nuclear energy, I have decided to write about radioactivity.  Radioactivity is a natural physical phenomenon that is a consequence of the weak nuclear force, strong nuclear force and the electromagnetic force – three of the four fundamental forces of nature.  It commonly refers to the process by which an unstable atom decays or transmutates to one or more atoms with an accompanying release of energy.  In this article, I will try to explain what radioactivity means and what natural phenomena it describes, why some atoms are radioactive, what radiation is and how it relates to radioactivity.

Protons, Neutrons and Electrons Oh My!

Model of an Atom

Model of an Atom - glenair.com

A quick recap of elementary chemistry is in order.  Except in exotic situations, matter is composed of tiny particles called atoms.  Atoms themselves are made of particles known as protons, neutrons, and electrons.  A proton has a single unit of positive charge.  An electron has a single unit of negative charge and is about 1800 times lighter.  Neutrons are a shade heavier than protons and do not carry any electric charge.  Atoms are made up of a tiny core called the nucleus where the heavy protons and neutrons reside.  The electrons orbit the nucleus akin to planets orbiting the sun.  In a neutral atom (one with equal positive and negative charge), the number of electrons and protons is the same.  We can classify atoms into various elements based on how many protons are in the atom’s nucleus. Oxygen is an element whose atoms have six protons each.  Hydrogen is an element with only one proton in its nucleus.  Note that we have not specified the number of neutrons in each atom.  The same element can come in a number of varieties, each of which have a different number of neutrons.  These varieties are known as isotopes.  Usually, the number of neutrons is comparable to the number of protons, but this can vary quite a bit.

Hydrogen Isotopes

Hydrogen Isotopes - wikipedia.org

For example, hydrogen has three different isotopes: protium, deuterium and tritium.  Protium is garden variety hydrogen which has no neutrons.  Deuterium has one neutron in its nucleus.  Tritium has two neutrons in its nucleus and is the heaviest hydrogen isotope.  These heavier isotopes occur naturally in trace quantities but are also manufactured for use in labs, nuclear power plants, thermonuclear nuclear warheads, watches, safety equipment and a number of other places.

Weight Watchers

Not all atoms are created equal.  Some of them are inherently more stable than others.  Some atoms may contain too many or too few neutrons to be stable.  These unstable atoms naturally attempt to change into other, hopefully more stable atoms by a process known as radioactivity or radioactive decay.  By-products of this process, when they are emitted at high speeds, are known as radiation.  For example, let’s look at tritium – the really heavy isomer of hydrogen with one proton and two neutrons.  Tritium, when left to its own devices, is not very stable and wants to become more stable.  But it cannot do this in any willy-nilly manner.  To decay, an atom can split up or transmutate in a couple of ways:

  1. Alpha decay

    Alpha decay - wikipedia.org

    An atom can mutate into multiple smaller atoms, distributing the protons and neutrons in its nucleus in the process.  The resulting atoms may or may not be stable.  If they are unstable, they will undergo further decays until they reach a stable state.  If one of the resulting atoms is helium (two protons and two neutrons), it is given a special name for historical reasons.  This particle is known as an alpha particle (α). This process occurs when a stable alpha particle is able to overcome the strong nuclear force that binds it in the nucleus, by exploiting the excessive electromagnetic repulsion and leaving the nucleus in a process known as quantum tunneling.

  2. Beta decay

    Beta decay - wikipedia.org

    An atom can also transmutate by converting a neutron into a proton and an electron and shooting the electron out of the core.  This electron, though much lighter than neutrons, protons or alpha particles, gets ejected with high enough velocity that it can be detected.  It is known as a beta particle (β), again for historical reasons.  This process is mediated by a force of nature known as the weak nuclear force which mediates the conversion of matter from one form to another.  In the diagram, you may notice an extra particle leaving (νe).  This is an extremely hard to detect particle known as a neutrino that I will ignore for the rest of this post.

  3. Gamma decay

    Gamma decay - wikipedia.org

    Lastly, an atom that is in an excited state (where it has a lot of excess energy in its nucleons) can decay by emitting a photon (a unit of electromagnetic energy) and remaining the same isotope but a more stable version of it.  This process is known as a gamma decay or isomeric transition and the resultant high energy photon is called a gamma ray (γ), again for historical reasons.  This is caused due to an atom succumbing to the strong nuclear force pulling it together and binding it tightly, releasing excess energy in the process.

Uranium-238 decay

Uranium-238 decay

Alpha particles, beta particles and gamma rays are common forms of radiation.  From this, we can see that radiation is not some mystical wave or an “pervasive unstoppable energy field” or anything else you hear in a sci-fi show (I’m looking at you Star Trek).  It is simply the high-energy particles and energy that an atom releases during decay.  Some of these particles can be other atoms, some of them can be nucleons such as protons or neutrons.  Yet other can be photons of various wavelengths and energy.  Nowhere in this process can atoms arbitrarily discard its protons or neutrons.  In all of these processes, no extra net electric charge is created or destroyed.  This is known as charge conservation. Certain other properties are also conserved but that would require a more thorough exposition on nuclear physics.

Let us go back to looking at our tritium atom.  Tritium has only one proton; hence it cannot form a lighter atom because atoms need to have at least one proton.  Instead, tritium mutates into helium-3, an isotope of helium that has two protons and one neutron, by decaying one of its neutrons.  The resultant electron is shot out of the nucleus at high speeds and can affect other atoms it runs into by slamming into them and transferring energy to them. Let’s look at another example to clarify matters.  Uranium naturally occurs as a number of isotopes, the most common being uranium-238 which has 92 protons and 146 neutrons.  When left to itself, uranium is relatively stable, but still undergoes an extremely slow radioactive decay.  Uranium-238 (written as U-238) ejects an alpha particle (which has two neutrons and two protons) to produce Thorium-234 which has 90 protons and 144 neutrons.  The thorium, which has an excess of neutrons, then undergoes a beta decay and converts a neutron to a proton and ejects an electron.  The result is called Protactinium-234 which has 91 protons and 143 neutrons.  The protactinium produced is in an excited state.  It can get rid of this excess energy by undergoing an gamma decay and emitting a photon.  The resultant ‘un-excited’ protactinium is still radioactive and continues decaying through beta decay.  The process continues for a while in a chain of reactions known as the radium decay chain.  The end result is lead (Pb-126) which has 82 protons and 124 neutrons.

A Coin Flip

Throughout this discussion, we talked about how atoms can decay and what they decay into.  We never talked about when they can decay.  Radioactivity is a stochastic process.  What this means is that it is impossible to predict when any particular atom will decay.  However, it is possible to predict how a given ensemble of identical radioactive atoms will decay over time.  Think of it this way – if someone were to give you a license plate number for a car and ask you to predict whether the car is going to get involved in a traffic collision today while giving you no other information, it would be impossible to know for sure what the car would do.  But on the other hand, given an entire city’s worth of cars, it is simply a matter of statistics to know, on average, how many accidents occur every day.  The individual cars are not very predictable.  But the ensemble tends to follow an underlying statistical distribution when it comes to frequency of collisions.  Radioactivity works on the same principle.  It has been empirically observed that radioactive decay is an exponential decay.  “What is an exponential decay?”, you ask.  It is a form of decay where the instantaneous (on-the-spot) rate of decay depends on the amount of substance that is present at that instant.  The more substance you have, the more decays you observe.  One example of exponential decay is the natural cooling of a hot object in a cool environment.  The hotter the object (i.e. the higher the temperature difference), the faster the object cools.  Hence, super hot tea cools down really rapidly when you first make it.  But after a few minutes, the tea is no longer scalding hot but it starts cooling down at a slower rate.  Tens of minutes later, it is still lukewarm and cooling down at an even slower pace, eventually coming to the same temperature as the surrounding room.

Time to Live

Radioactive decay

Radioactive decay - earthsci.org

But simply knowing that atoms decay along exponential curves does not tell us how fast they decay.  Going back to our discussion on hot objects cooling, we know that metals cool faster because they transmit heat better.  We know that glass is a bad conductor of heat.  It still cools down, but not as quickly as iron or aluminum.  Different isotopes of radioactive elements similarly vary in how quickly they decay.  One way of adequately describing the speed of decay is to specify the time it takes for half of a sample of radioactive substance to decay away.  The shorter this time is, the faster an isotope decays.  This quantity is known as the half-life of a radioactive isotope.  Uranium-238 (the naturally occurring isotope) has a half-life of around 4.5 billion years.  This means that if you held a slab of pure uranium-238 today, in 4.5 billion years half of the atoms in that slab would have decayed into other products (such as thorium and lead).  After yet another 4.5 billion years, only a quarter (half of half) of the original slab would still be U-238.  After yet another half-life, only an eighth would remain.  After 7 half-lives, less an 1% of the original substance is left and the rest has decayed.  Strangely, this indicates that naturally occurring U-238 is actually not that radioactive.  Sodium-24 is a radioactive isotope of sodium that beta decays to a magnesium isotope.  It has a half-life of about 15 hours.  This means that sodium-24 is highly unstable and that it decays quite rapidly.  There are radioactive isotopes of polonium, astatine and bismuth that have half-lives in the order of seconds or minutes.  These elements are highly unstable and very rapidly release radiation.  How should one think about this?  Suppose that a certain fixed amount of radioactive substance contaminates your environment.  If the radioisotope has an extremely long half-life, it tends to hang around for basically forever but because it is decaying so slowly, it may not actually emit enough radiation to cause worry.  If the radioisotope has an extremely short half-life, it tends to be quite dangerous because it is rapidly producing a lot of radiation.  On the other hand, if it has a half-life in the order of minutes, then by the time a day is up, almost none of the original material is left over.  Hence, it might be easy to avoid and “wait-out” such radioisotopes by staying away from it.  The most worrisome of the radioisotopes are the ones that have half-lives on the order of years, decades or centuries.  They decay fast enough for us to notice, but are active for long enough that we cannot ignore it or wait it out.

Wait wait! Tell me more!

Now that you understand the basics of radioactivity and radioactive decay, you may be curious as to how all this relates to energy and nuclear power or radiation poisoning.  How do atoms breaking apart produce power?  How does radiation harm humans.  After all, you can tell when you have been sucker punched, but you never feel neutrons and electrons crashing into you.  I will cover that in further articles in this series.

Addendum: A Mathematical Modeling

For those amongst you who are itching for some math, here is a quickly discussion of the underlying mathematical model behind half-lives.  Skip over this section if you do not already understand basic differential equations.  We can model decaying as a process that starts with N0 particles at time t=0, where a particle is removed from the ensemble when it decays.  The instantaneous number of particles (N) that remain un-decayed at some time t in the future is based on the following rate equation:

\frac{dN}{dt} = -\lambda N

Note that the equation shows that the decay rate (the rate of change of the number of particles) is negative and is directly proportional to the instantaneous number of particles up to a constant of proportionality λ, known as the decay constant.  We can simplify this further:

\int\frac{1}{N} \; dN = -\int \lambda \; dt

\log_e{N} + c = -\lambda t

We know that at time t = 0, no particles have decayed yet (this was our boundary condition).  Hence:

\log_e{N_0} + c = 0

\log_e \frac{N}{N_0} = -\lambda t

N = N_0 e^{-\lambda t}

Glancing at the units involved, since t has the dimensions of time, λ must have units of s-1.  We can determine the half-life of a substance by solving for t when N = \frac{N_0}{2}.

\frac{N_0}{2} = N_0 e^{-\lambda t_h}

-\log_e{2} = -\lambda t_h

t_h = \frac{\log_e{2}}{\lambda}

We can use this fact to look at our decay equation in yet another way:

N = N_0 e^{-\frac{log_e{2}\; t}{t_h}}

N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{t_h}}

Reading this equation, it says: For every time that is a multiple of th, the amount of undecayed substance remaining is decreased by an extra half.  Isn’t math beautiful?

Tags: , , , , , ,

13 responses to ““Paging Dr. Freeman”: What Radioactivity Is”

  1. Alethea Dowson says :

    I must tell you that it’s hard to find your posts in google,
    i found this one on 19 spot, you should build some
    quality backlinks in order to rank your webiste, i know how to help you, just type in google – k2 seo tips and tricks

  2. havasu landscaping says :

    Currently it seems like BlogEngine is the preferred blogging platform out there right now.
    (from what I’ve read) Is that what you are using on your
    blog?

  3. Blair says :

    I read a lot of interesting content here. Probably you spend a lot of
    time writing, i know how to save you a lot of
    work, there is an online tool that creates high
    quality, google friendly articles in seconds, just search in google
    – laranitas free content source

  4. home window tint film says :

    I think this is among the most significant information for me.
    And i’m glad reading your article. But wanna remark on few general things,
    The website style is wonderful, the articles is really excellent : D.
    Good job, cheers

  5. private jets prices says :

    Hi there! This blog post couldn’t be written much better!
    Looking through this post reminds me of my previous roommate!

    He always kept talking about this. I will forward
    this information to him. Fairly certain he will have
    a good read. Thank you for sharing!

  6. greatest common factor calculator says :

    My spouse and I stumbled over here different web address
    and thought I should check things out. I like what I see so i am just following you.

    Look forward to looking into your web page yet again.

  7. listen music for free says :

    It is really a great and helpful piece of
    info. I am satisfied that you simply shared this useful info with us.
    Please keep us up to date like this. Thanks for sharing.

  8. reverse cowgirl porn says :

    Let’ѕ hope he hаs a more pleаsant expеriencе on ɦis new show.
    If yүou are using a hosting service, they will send you tҺе free software
    to make your fοaling camera appear online. Browseг
    Basedd Any gߋod lіve chzt networking site would
    haνe a built-in video chɑt systm oon teіr weƄsite. Tɦese arrangements аre legitimate аnd real, and can bе obtained
    very eɑsily. Kids ѡill bе fast aslеep well bеfore
    midnight,ɑnd you can Һave your own ρre-midnight countdown աith themm before
    bbed tіme.

    You never know whether yoսr soul mɑte iis lіving iin somе other part of the world.
    That is why tɦere is absolutelү noo explanation of being unsuгe.
    Anotheг benefit of using a ɦoѕt iѕ that thesy hɑve
    a community of “cam watchers” thatt wіll give you extra еyes watchҺing your maгe.
    Theʏ աill not accept online adսlt entertainment payments.

    Exactly who has no digital camera enclosed to theіr gadgets whіch are portɑble, such aѕ tablets or
    cell phones? On the other hand, if you do not waant to usе micropҺone, you can do a text chat, where you
    both will bе wгiting while still seеіng each other on the cam.

    Јɑson’s Ghost is a sort of sister site to Asylumcam. Sincе yyou can see thе person lіve
    while сɦatting, you get aan opportunitfy tο սnderstand еaсh օther better.
    They also have many forums for cams and gеneral
    paranormal. Nature lovеrs have been making great
    use of webcams. The Logitech 9 ѕeries iss very good (c910 Pгo or c920).

    Thee live movie chat roߋms are full of such possiЬilities.

    This really is of cоսrse an important feature about eѕtablisheԀ live cam сhat room internet websites.

    People now have a platform wҺerе thеy can raise ther oρiniоns about various issuеs just lіke
    lɑrge, mսlti-natiоnal corƿorations.It’s good to see Nеw Oгleans getting the support and spoгіt
    that only it has. Icutoo iis a Μоre Details abоut Icutoo is a Tweet This Ϝrеe
    live cam cɦat room has revοlutionized the world of online dating and
    friendshiр.

    12:01 ɑ.m, January 1, 2009: Ηapƿy New Yeaг! 5 cams агe in the sitе ownerѕ home, and the гest are геmote cams from
    all over the world.Thhe remote cаm list incluԀеѕ tҺe
    Pүramid Cam, Οrdsall Hall ϲams, Mount Shasta andd more.
    As the main tгick of the trɑdе, you must show youг charms’ cunningly.

    If yߋu join thee live ѵideo сliƿ cam community, you
    gett an opportunity to ցet іn tօuch wіth like-minded people with comparаble beliefs and inteгests.
    The faѕcination with tɦese Shiba Inu рuppies just seems tto groѡ by tɦe day.

    Creаtive սses of ѡebcams Webcams are mߋst
    popular for one-on-one communications ƅеtween peߋple who are at
    a ɗistance from оne another. There are some chat rooms which
    you cɑn only enter if youu are 18 years and abоѵе.

    In this modern aage people are looking for ways to
    distract themselves from the everyday Һasslеs of lіfe
    and relatіonships. Taking pretty makeup is always good.
    Midnight: Kiss ѕomeоne, quick.

    A webcam iis a viԀro device that is connected to a computeг or
    comkputer netwоrҝ. Are you a spiгitual person? Either way,
    chatting iis definitely a feɑture worth considеring inside
    youyr е-cߋmmerсe wbsite desіgn. The Look 313 рrogram hɑs file locations to store ƴour captured web cast as
    well aѕ othеr features like yiur record, stop and qulity settings.
    Οld gotɦic looking liЬrary іn Evansville, Inndiana the ԜillarԀ Lіbгarү is home to the
    Gгey Lady.

    Don’t forget about thе time difference either.. today and will lаѕt foг 24 houгs.
    The Ƅest thing about fre weЬ cam chitchat is that it allowѕ yօu to seee thee ppeгson you aгe chatting with.
    This is also a great աay to choosе people baseɗ on interests rathner
    thhan just loօks. Thеrde arre several parades bevore Mɑrdi Gras.

    You coսod ɑlso contact thesxe sites if youս have any suggestikns օr comments
    to give. WҺat is a աebcɑm? pօгn camns fгee ϲhat can proνidе ɑ thrillіng time and also gratifіcɑtiߋn tо peoρle
    working witҺ it. Being a grteat ѕource of modern daү entertainment,
    іt surelʏ has а сhance tо goгge on the gοodieѕ. If you do
    online teaching, like languаge lesson, you can be use PayPɑl too.) 5; Skype
    perfomance – Do it youhr performance!

    The web camera portion of thee Look 313 workѕ νery well ɑndd uses ѕimple programming forr sedtup
    and սse. Yоu сan easily take the camera at
    your side in the cіty for thߋse oof you who prefer
    to show-off. A cam tо cam sesѕion allоաs you
    to stay ϲlоse to yoսr friends who you would lost touch
    wіth due tο yolur busy աork ѕcheɗule. This system allows yߋu to Ƅе
    sure of wherе your hard earned money is going to,
    and with ѕujch a featurе at yoսr dіspoѕal you
    are not going too cҺoose ѕomeone thaqt looks different to whɑt they havе put as their
    profile pіcture. Going on vaϲation?

    You should not be rеգuіred to obtain any
    additiоnal softwaгe in oгder to ցain access to the speak roim servіces.
    Webam chat іsfreе, simplе, аnd fast. Ƭɦe proɡram comes
    with а dozen tҺemeѕ and you can purchase more from their website.
    One tҺing must be remembereԁ when consuming liv free sex cams is keеping discrеtion. We rarely get time for ourselves.

    There are ѕeveral ays in which you can convert your ƅasemеnt.

    The գuestion is thοugh; cаn yyou support a networк сamera suϲh aѕ that?
    These sites haѵe proven witɦ іts complete andd integral platform tha all paгties involved willl feel safe
    and srcure with the cɦoіcеѕ they make. It won’t charge yߋս anny cash to ցo aЬout
    this աebsitе for possibilities.

    it can throw you off. Know Mօre About All of thhe Components of
    a Spу Camera There aare numеrous ԁiverse рieces and parts that
    are іncluded with anyy fundamental standard micго spy
    nanny cam. After constгuctinga strong online relatіonship, іf you meet eaϲh
    other personally, yօu cɑn givе a ƅrdand
    new dimension to yoսr lovе lives. Who ҟnows the chat sіte maү actually add those feаtures to
    maкe chatting moгe interesting? Tɦe adult web cams show and other such ѡeb cam
    chat rоoms proѵide you an еxcellеnt орportunity to
    meet the kind of people уou always wanted too meet.

    This is your chance to establish yօս as the
    beest livе cam chat moԀеl, keeping pace with thhe sߋaring demand
    of optimսm Eros entertainment thrοugh free live
    vіdeo chаt.

Leave a comment